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Soopervisor

Soopervisor runs Ploomber pipelines for batch processing (large-scale training or batch serving) or online inference.

pip install soopervisor

Watch our presentation at EuroPython 2021: Develop and Deploy a Machine Learning Pipeline in 30 Minutes With
Ploomber.

BATCH PROCESSING 1
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CHAPTER

ONE

SUPPORTED PLATFORMS

• Batch serving and large-scale training:

– Airflow

– Argo/Kubernetes

– AWS Batch

– Kubeflow

– SLURM

• Online inference:

– AWS Lambda

3



Soopervisor

4 Chapter 1. Supported platforms



CHAPTER

TWO

FROM NOTEBOOK TO A PRODUCTION PIPELINE

We also have an example that shows how to use our ecosystem of tools to go from a monolithic notebook to a pipeline
deployed in Kubernetes.
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CHAPTER

THREE

STANDARD LAYOUT

Soopervisor expects your Ploomber project to be in the standard project layout, which requires the following:

3.1 Dependencies file

• requirements.lock.txt: pip dependencies file

Tip: You can generate it with pip freeze > requirements.lock.txt

OR

• environment.lock.yml: conda environment with pinned dependencies

Tip: You can generate it with conda env export --no-build --file environment.lock.yml

3.2 Pipeline declaration

A pipeline.yaml file in the current working directory (or in src/{package-name}/pipeline.yaml if your project
is a Python package).

Note: If your project is a package (i.e., it has a src/ directory, a setup.py file is also required.

3.3 Scaffolding standard layout

The fastest way to get started is to scaffold a new project:

# install ploomber
pip install ploomber

# scaffold project
ploomber scaffold

# or to use conda (instead of pip)
(continues on next page)
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(continued from previous page)

ploomber scaffold --conda

# or to use the package structure
ploomber scaffold --package

# or to use conda and the package structure
ploomber scaffold --conda --package

Then, configure the development environment:

# move to your project's root folder
cd {project-name}

# configure dev environment
ploomber install

Note: ploomber install automatically generates the environment.lock.yml or requirements.lock.txt file.
If you prefer so, you may skip ploomber install and create the lock files yourself.

8 Chapter 3. Standard layout



CHAPTER

FOUR

USAGE

Say that you want to train multiple models in a Kubernetes cluster, you may create a new target environment to execute
your pipeline using Argo Workflows:

soopervisor add training --backend argo-workflows

After filling in some basic configuration settings, export the pipeline with:

soopervisor export training

Soopervisor will take care of packaging your code and submitting it for execution. Using Argo Workflows will create
a Docker image, upload it to the configured registry, generate an Argo’s YAML spec, and submit the workflow.

Depending on the selected backend (Argo, Airflow, AWS Batch, or AWS Lambda), configuration details will change,
but the API remains the same: soopervisor add, then soopervisor export.

4.1 Airflow

Important: This tutorial requires soopervisor 0.6.1 or higher

Note: This tutorial exports an Airflow DAG using the KubernetesPodOperator, to use alternative Operators, see
Airflow cookbook. Got questions? Reach out to us on Slack.

This tutorial shows you how to export a Ploomber pipeline to Airflow.

If you encounter any issues with this tutorial, let us know.

4.1.1 Pre-requisites

• docker

9
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4.1.2 Building Docker image

We provide a Docker image so you can quickly run this example:

# get repository
git clone https://github.com/ploomber/soopervisor
cd soopervisor/tutorials/airflow

# create a directory to store the pipeline output
export SHARED_DIR=$HOME/ploomber-airflow
mkdir -p $SHARED_DIR

# build image
docker build --tag ploomber-airflow .

# start
docker run -i -t -p 8080:8080 --privileged=true \

-v /var/run/docker.sock:/var/run/docker.sock \
--volume $SHARED_DIR:/mnt/shared-folder \
--env SHARED_DIR \
--env PLOOMBER_STATS_ENABLED=false \
ploomber-airflow /bin/bash

Note: We need to run docker run in privileged mode since we’ll be running docker commands inside the container.
More on that here

4.1.3 Create Kubernetes cluster

By default, the Airflow integration exports each task in your pipeline as a Airflow task using the KubernetesPodOper-
ator, so we need to create a Kubernetes cluster to run the example:

The Docker image comes with k3d pre-installed; let’s create a cluster:

# create cluster
k3d cluster create mycluster --volume $SHARED_DIR:/host

# check cluster
kubectl get nodes

4.1.4 Get sample Ploomber pipeline

# get example
ploomber examples -n templates/ml-intermediate -o ml-intermediate
cd ml-intermediate

cp requirements.txt requirements.lock.txt
# configure development environment
pip install ploomber soopervisor
pip install -r requirements.txt

10 Chapter 4. Usage
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4.1.5 Configure target platform

# add a new target platform
soopervisor add training --backend airflow

Usually, you’d manually edit soopervisor.yaml to configure your environment; for this example, let’s use one that
we already configured, which tells soopervisor to mount a local directory to every pod so we can review results later:

cp ../soopervisor-airflow.yaml soopervisor.yaml

We must configure the project to store all outputs in the shared folder so we copy the pre-configured file:

cp ../env-airflow.yaml env.yaml

4.1.6 Submit pipeline

soopervisor export training --skip-tests --ignore-git

# import image to the cluster
k3d image import ml-intermediate:latest --cluster mycluster

Note: k3d image import is only required if creating the cluster with k3d.

Once the export process finishes, you’ll see a new training/ folder with two files: ml-intermediate.py (Airflow
DAG) and ml-intermediate.json (DAG structure).

4.1.7 Customizing Airflow DAG

The .py file generated by soopervisor export contains the logic to convert our pipeline into an Airflow DAG
with basic defaults. However, we can further customize it. In our case, we need some initialization parameters in the
generated KubernetesPodOperator tasks. Execute the following command to replace the generated file with one
that has the appropriate settings:

cp ../ml-intermediate.py training/ml-intermediate.py

4.1.8 Submitting pipeline

To execute the pipeline, move the generated files to your AIRFLOW_HOME. For this example, AIRFLOW_HOME is /root/
airflow:

mkdir -p /root/airflow/dags
cp training/ml-intermediate.py ~/airflow/dags
cp training/ml-intermediate.json ~/airflow/dags

ls /root/airflow/dags

If everything is working, you should see the ml-intermediate DAG here:

4.1. Airflow 11
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airflow dags list

Let’s start the airflow UI and scheduler (this will take a few seconds):

bash /start_airflow.sh

Let’s unpause the DAG then trigger the run:

airflow dags unpause ml-intermediate

After unpausing, you should see the following message:

Dag: ml-intermediate, paused: False

If you don’t, likely, the Airflow scheduler isn’t ready yet, so wait for a few seconds and try again.

Trigger execution:

airflow dags trigger ml-intermediate

Congratulations! You just ran Ploomber on Airflow!

Note: If you encounter issues with Airflow, you can find the logs at /airflow-scheduler.log and /
airflow-webserver.log.

4.1.9 Monitoring execution status

You may track execution progress from Airflow’s UI by opening http://localhost:8080 (Username: ploomber, Pass-
word: ploomber)

Alternatively, with the following command:

airflow dags state ml-intermediate {TIMESTAMP}

The TIMESTAMP shows after running airflow dags trigger ml-intermediate, for example, once you execute
the airflow dags trigger command, you’ll see something like this in the console:

Created <DagRun ml-intermediate @ 2022-01-02T18:05:19+00:00: manual__2022-01-
02T18:05:19+00:00, externally triggered: True>

Then, you can get the execution status with:

airflow dags state ml-intermediate 2022-01-02T18:05:19+00:00

4.1.10 Incremental builds

Try exporting the pipeline again:

soopervisor export training --skip-tests --ignore-git

You’ll see a message like this: Loaded DAG in 'incremental' mode has no tasks to submit. Soopervisor
checks the status of your pipeline and only schedules tasks that have changed since the last run; since all your tasks are
the same, there is nothing to run!

Let’s now modify one of the tasks and submit again:

12 Chapter 4. Usage
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# modify the fit.py task, add a print statement
echo -e "\nprint('Hello from Kubernetes')" >> fit.py

# re-build docker image
soopervisor export training --skip-tests --ignore-git

# import image
k3d image import ml-intermediate:latest --cluster mycluster

# copy files to the dags directory
cp training/ml-intermediate.py ~/airflow/dags
cp training/ml-intermediate.json ~/airflow/dags

# trigger execution
airflow dags trigger ml-intermediate

If you open the UI, you’ll see that this time, only the fit task ran because that’s the only tasks whose source code
change; we call this incremental builds, and they’re a great feature for quickly running experiments in your pipeline
such as changing model hyperparameters or adding new pre-processing methods; it saves a lot of time since you don’t
have to execute the entire pipeline every time.

4.1.11 Clean up

To delete the cluster:

k3d cluster delete mycluster

4.1.12 Using other Operator

If you want to generate Airflow DAGs using other operators, check out the Airflow cookbook

4.2 AWS Batch

Important: This tutorial requires soopervisor 0.6.1 or higher

Note: Got questions? Reach out to us on Slack.

AWS Batch is a managed service for batch computing. This tutorial shows you how to submit a Ploomber pipeline to
AWS Batch.

If you encounter any issues with this tutorial, let us know.

Click here to see a recorded demo.

4.2. AWS Batch 13

https://ploomber.io/community/
https://aws.amazon.com/batch/
https://github.com/ploomber/soopervisor/issues/new?title=AWS%20Batch%20tutorial%20problem
https://youtu.be/XCgX1AszVF4


Soopervisor

4.2.1 Pre-requisites

• conda

• docker

• aws cli

• git

soopervisor takes your pipeline, packages it, creates a Docker image, uploads it, and submits it for execution; how-
ever, you still have to configure the AWS Batch environment. Specifically, you must configure a computing environment
and a job queue. Refer to this guide for instructions.

Note: Only EC2 compute environments are supported.

Once you’ve configured an EC2 compute environment and a job queue, continue to the next step.

4.2.2 Setting up project

First, let’s install ploomber:

pip install ploomber

Fetch an example pipeline:

# get example
ploomber examples -n templates/ml-online -o ml-online
cd ml-online

Configure the development environment:

ploomber install

Then, activate the environment:

conda activate ml-online

4.2.3 Configure S3 client

We must configure a client to upload all generated artifacts to S3. To obtain such credentials, you may use the AWS
console, ensure you give read and write S3 access. You may also create an S3 bucket or use one you already have.

Save a credentials.json file in the root directory (the folder that contains the setup.py file) with your authentica-
tion keys:

{
"aws_access_key_id": "YOUR-ACCESS-KEY-ID",
"aws_secret_access_key": "YOU-SECRET-ACCESS-KEY"

}

Now, configure the pipeline to upload artifacts to S3. Modify the pipeline.yaml file at ml-online/src/
ml_online/pipeline.yaml so it looks like this:
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meta:
source_loader:
module: ml_online

import_tasks_from: pipeline-features.yaml

# add this
clients:

File: ml_online.clients.get_s3

# content continues...

Go to the src/ml_online/clients.py file and edit the get_s3 function, modifying the bucket_name and parent
parameters. The latter is the folder inside the bucket to save pipeline artifacts. Ignore the second function; it’s not
relevant for this example.

To make sure your pipeline works, run:

ploomber status

You should see a table with a summary. If you see an error, check the traceback to see if it’s an authentication problem
or something else.

4.2.4 Submitting a pipeline to AWS Batch

We are almost ready to submit. To execute tasks in AWS Batch, we must create a Docker image with all our project’s
source code.

Create a new repository in Amazon ECR before continuing. Once you create it, authenticate with:

aws ecr get-login-password --region your-region | docker login --username AWS --password-
→˓stdin your-repository-url/name

Note: Replace your-repository-url/namewith your repository’s URL and your-regionwith the corresponding
ECR region

Let’s now create the necessary files to export our Docker image:

# get soopervisor
pip install soopervisor

# register new environment
soopervisor add training --backend aws-batch

Open the soopervisor.yaml file and fill in the missing values in repository, job_queue and region_name.

training:
backend: aws-batch
repository: your-repository-url/name
job_queue: your-job-queue
region_name: your-region-name
container_properties:

(continues on next page)
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(continued from previous page)

memory: 16384
vcpus: 8

Submit for execution:

soopervisor export training --skip-tests --ignore-git

The previous command will take a few minutes since it has to build the Docker image from scratch. After that, subse-
quent runs will be much faster.

Note: if you successfully submitted tasks, but they are stuck in the console in RUNNABLE status. It’s likely that
the requested resources (the container_properties section in soopervisor.yaml) exceeded the capacity of the
computing environment. Try lowering resources and submit again. If that doesn’t work, check this out.

Tip: The number of concurrent jobs is limited by the resources in the Compute Environment. Increase them to run
more tasks in parallel.

Congratulations! You just ran Ploomber on AWS Batch!

4.3 Kubernetes (Argo)

Note: Got questions? Reach out to us on Slack.

This tutorial shows how to run a pipeline in Kubernetes via Argo Workflows locally or in Google Cloud.

If you encounter any issues with this tutorial, let us know.

Click here to see the Argo Community Meeting talk.

We have two tutorials:

• Local (only requires docker)

• Google Cloud

4.3.1 Local example

Important: This tutorial requires soopervisor 0.6.1 or higher

This tutorial runs a pipeline in a local Kubernetes cluster using k3d.
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Pre-requisites

• docker

Building Docker image

We provide a Docker image so you can quickly run this example:

# get repository
git clone https://github.com/ploomber/soopervisor
cd soopervisor/tutorials/kubernetes

# create a directory to store the pipeline output
export SHARED_DIR=$HOME/ploomber-k8s
mkdir -p $SHARED_DIR

# build image
docker build --tag ploomber-k8s .

# start
docker run -i -t \

--privileged=true -v /var/run/docker.sock:/var/run/docker.sock \
--volume $SHARED_DIR:/mnt/shared-folder \
--env SHARED_DIR \
--env PLOOMBER_STATS_ENABLED=false \
-p 2746:2746 \
ploomber-k8s /bin/bash

Note: We need to run docker run in privileged mode since we’ll be running docker commands inside the container.
More on that here

Create Kubernetes cluster

The Docker image comes with k3d pre-installed; let’s create a cluster:

# create cluster
k3d cluster create mycluster --volume $SHARED_DIR:/host --port 2746:2746

# check cluster
kubectl get nodes

Note: If you see the error message Bind for 0.0.0.0:2746 failed: port is already allocated, you
may drop the --port 2746:2746 and try again: k3d cluster create mycluster --volume $SHARED_DIR:/
host the command will work but you’ll be unable to open Argo’s GUI.

4.3. Kubernetes (Argo) 17
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Install Argo

We now install argo; note that we are using a custom installation file (argo-pns.yaml) to ensure this works with k3d.

# install argo
kubectl create ns argo
kubectl apply -n argo -f argo-pns.yaml

# check argo pods (once they're all running, argo is ready)
kubectl get pods -n argo

Note: argo-pns.yaml is a custom file that changes the Argo executor to PNS; this is required to ensure Argo works
on k3d; however, this change isn’t required in a production environment.

Tip: Optionally, submit sample Argo workflow to ensure everything is working:

argo submit -n argo --watch https://raw.githubusercontent.com/argoproj/argo-workflows/
→˓master/examples/hello-world.yaml

Get sample Ploomber pipeline

# get example
ploomber examples -n templates/ml-intermediate -o ml-intermediate
cd ml-intermediate

# configure development environment
cp requirements.txt requirements.lock.txt
pip install ploomber soopervisor
pip install -r requirements.txt

Configure target platform

Soopervisor allows you to configure the target platform using a soopervisor.yaml file, let’s add it and set the backend
to argo-worflows:

soopervisor add training --backend argo-workflows

Usually, you’d manually edit soopervisor.yaml to configure your environment; for this example, let’s use one that
we already configured, which tells soopervisor to mount a local directory to every pod so we can review results later:

cp ../soopervisor-k8s.yaml soopervisor.yaml

We must configure the project to store all outputs in the shared folder, so we copy the pre-configured file:

cp ../env-k8s.yaml env.yaml
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Submit pipeline

We finished configuring; let’s now submit the workflow:

# build docker image (takes a few minutes the first time) and generate an argo's yaml spec
soopervisor export training --skip-tests --ignore-git

# import image to the k8s cluster
k3d image import ml-intermediate:latest --cluster mycluster

# submit workflow
argo submit -n argo --watch training/argo.yaml

Congratulations! You just ran Ploomber on Kubernetes!

Note: k3d image import is only required if creating the cluster with k3d.

Once the execution finishes, take a look at the generated artifacts:

ls /mnt/shared-folder

Tip: You may also watch the progress from the UI.

# port forwarding to enable the UI
kubectl -n argo port-forward svc/argo-server 2746:2746

Then, open: https://127.0.0.1:2746

Incremental builds

Try exporting the pipeline again:

soopervisor export training --skip-tests --ignore-git

You’ll see a message like this: Loaded DAG in 'incremental' mode has no tasks to submit. Soopervisor
checks the status of your pipeline and only schedules tasks that have changed since the last run; since all your tasks are
the same, there is nothing to run!

Let’s now modify one of the tasks and submit it again:

# modify the fit.py task, add a print statement
echo -e "\nprint('Hello from Kubernetes')" >> fit.py

# re-build docker image and submit
soopervisor export training --skip-tests --ignore-git
k3d image import ml-intermediate:latest --cluster mycluster
argo submit -n argo --watch training/argo.yaml

You’ll see that this time, only the fit task ran because that’s the only tasks whose source code change, we call this
incremental builds, and they’re a a great feature for quickly running experiments in your pipeline, such as changing
model hyperparameters or adding new pre-processing methods; it saves a lot of time since you don’t have to execute
the entire pipeline every time.

4.3. Kubernetes (Argo) 19
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Clean up

To delete the cluster:

k3d cluster delete mycluster

4.3.2 Google Cloud

Important: This tutorial requires soopervisor 0.6.1 or higher

This second tutorial runs a pipeline in a local Kubernetes cluster using Google Cloud.

Note: You may use or create a new Google Cloud project to follow this tutorial.

Pre-requisites

• kubectl

• Google Cloud SDK

• conda instructions

• git

• Install Ploomber with pip install ploomber

Instructions

Create a cluster and install Argo:

# create cluster
gcloud container clusters create my-cluster --num-nodes=1 --zone us-east1-b

# install argo
kubectl create ns argo
kubectl apply -n argo -f https://raw.githubusercontent.com/argoproj/argo-workflows/
→˓stable/manifests/quick-start-postgres.yaml

# create storage bucket (choose whatever name you want)
gsutil mb gs://YOUR-BUCKET-NAME

Submit a sample workflow to make sure Argo is working:

argo submit -n argo --watch https://raw.githubusercontent.com/argoproj/argo/master/
→˓examples/hello-world.yaml

Tip: Enable Argo’s UI:

# port forwarding to enable the UI
kubectl -n argo port-forward svc/argo-server 2746:2746
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Then, open: https://127.0.0.1:2746

Install ploomber:

pip install ploomber

Let’s now run a Ploomber sample Machine Learning pipeline:

# get example
ploomber examples -n templates/ml-online -o ml-online
cd ml-online

# configure development environment
ploomber install

# activate environment
conda activate ml-online

# add a new target platform
soopervisor add training --backend argo-workflows

The previous command creates a soopervisor.yaml file where we can configure the container registry to upload our
Docker image:

training:
backend: argo-workflows
repository: gcr.io/PROJECT-ID/my-ploomber-pipeline

Replace PROJECT-ID with your actual project ID.

Each task will run in isolation, we must ensure that products generated by a given task are available to its corresponding
downstream tasks. Ww can use Google Cloud Storage for that, add the following to the src/ml_online/pipeline.
yaml file:

# more content above...

serializer: ml_online.io.serialize
unserializer: ml_online.io.unserialize

# add these two lines
clients:
File: ml_online.clients.get_gcloud

# content continues...

The previous change tells Ploomber to call the function get_gcloud defined in module src/ml_online/clients.py
to get the client. Edit the clients.py to add your bucket name:

from ploomber.clients import GCloudStorageClient

def get_gcloud():
# edit YOUR-BUCKET-NAME
return GCloudStorageClient(bucket_name='YOUR-BUCKET-NAME',

parent='ml-online',
json_credentials_path='credentials.json')
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You can ignore the rest of the file. Finally, we add service account credentials to upload to Google Cloud Storage. To
learn more about service accounts, click here.

Store the service account details in a credentials.json in the root project directory (same folder as setup.py):

We are ready to execute the workflow:

# authenticate to push docker image
gcloud auth configure-docker

# packages code, create docker image and upload it (takes a few mins)
soopervisor export training

# submit workflow
argo submit -n argo training/argo.yaml

You may keep track of execution by opening the UI. Check out the bucket to see output.

Congratulations! You just ran Ploomber on Kubernetes!

Attention: Make sure you delete your cluster, bucket, and image after running this example!

# delete cluster
gcloud container clusters delete my-cluster --zone us-east1-b

# delete bucket
gsutil rm -r gs://my-sample-ploomber-bucket

# delete image (you can get the image id from the google cloud console)
gcloud container images delete IMAGE-ID

Optional: Mounting a shared disk

Note: If you use a shared disk instead of storing artifacts in S3 or Google Cloud Storage, you must execute the pipeline
with the --skip-tests flag. e.g., soopervisor export training --skip-tests, otherwise the command will
fail if your project does not have a remote storage client configured.

In the example, we configured the pipeline.yaml file to use Google Cloud Storage to store artifacts, this serves two
purposes: 1) Make artifacts available to us upon execution, and 2) Make artifacts available to dowstream tasks.

This happens because pods run in isolation, if task B depends on task A, it will fetch A’s output from cloud storage
before execution. We can save dowload time (and cut costs) by mounting a shared volume so that B doesn’t have to
download A’s output. Ploomber automatically detects this change and only calls the cloud storage API for uploading.

Here’s how to configure a shared disk:

# create disk. make sure the zone matches your cluster
gcloud compute disks create --size=10GB --zone=us-east1-b gce-nfs-disk

# configure the nfs server
curl -O https://raw.githubusercontent.com/ploomber/soopervisor/master/doc/assets/01-nfs-
→˓server.yaml
kubectl apply -f 01-nfs-server.yaml

(continues on next page)
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# create service
curl -O https://raw.githubusercontent.com/ploomber/soopervisor/master/doc/assets/02-nfs-
→˓service.yaml
kubectl apply -f 02-nfs-service.yaml

# check service
kubectl get svc nfs-server

# create persistent volume claim
curl -O https://raw.githubusercontent.com/ploomber/soopervisor/master/doc/assets/03-nfs-
→˓pv-pvc.yaml
kubectl apply -f 03-nfs-pv-pvc.yaml

Optionally, you can check that the disk is properly configured by running this sample workflow:

# run sample workflow (uses nfs and creates an empty file on it)
curl -O https://raw.githubusercontent.com/ploomber/soopervisor/master/doc/assets/dag.yaml
argo submit -n argo --watch dag.yaml

Check the output:

# get nfs-server pod name
kubectl get pod

# replace with the name of the pod
kubectl exec --stdin --tty {nfs-server-pod-name} -- /bin/bash

Once inside the Pod, run:

ls /exports/

You should see files A, B, C, D. Generated by the previous workflow.

Let’s now run the Machine Learning workflow. Since we configured a shared disk, artifacts from upstream tasks will
be available to downstream ones (no need to download them from Cloud Storage anymore); the Cloud Storage client
is only used to upload artifacts for us to review later.

To make the shared disk available to the pods that run each task, we have to modify soopervisor.yaml:

training:
backend: argo-workflows
repository: gcr.io/your-project/your-repository
mounted_volumes:
- name: nfs
sub_path: my-shared-folder
spec:
persistentVolumeClaim:
claimName: nfs

This exposes /my-shared-folder sub directory in our shared disk in /mnt/nfs/ on each pod. Now, we must con-
figure the pipeline to store all products in /mnt/nfs/. Create an env.yaml file in the root folder (same folder that
contains the setup.py file) with this content:
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sample: False
# this configures the pipeline to store all outputs in the shared disk
product_root: /mnt/nfs

4.4 Kubeflow

Important: The kubeflow integration requires soopervvisor>=0.7

Important: The Kubeflow tutorial is in beta! Got questions or found issues? Reach out to us on Slack.

This tutorial shows you how to export a Ploomber pipeline to Kubeflow.

If you encounter any issues with this tutorial, let us know.

Note: This tutorial uses cloud storage (S3 or Google Cloud Storage). In addition, it runs on the local cluster local
storage for faster data fetch.

4.4.1 Pre-requisites

• Kubeflow

• conda See instructions here

• docker

• git

• Install Ploomber with pip install ploomber

Note: When installing Kubeflow, you must use a strong enough VM to meet the basic requirements. This tutorial
assumes the Kubeflow is configured and you’re running within this cluster. Another option is to run the tutorial locally
and upload the final ploomber_pipeline.yaml to Kubeflow.

Instructions

First, let’s install ploomber:

pip install ploomber

Let’s now pull some sample code:

# get example
ploomber examples -n templates/ml-intermediate -o ml-intermediate
cd ml-intermediate

Since each task executes in a different Docker container, we have to configure cloud storage for tasks to share data.
Modify the environment.yml file and add the appropriate dependency:
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# content...
- pip:
# dependencies...

# add your dependency here
- boto3 # if you want to use S3
- google-cloud-storage # if you want to use Google Cloud Storage

We also need to configure the pipeline to use cloud storage, open the pipeline.yaml file, and add the following next
to the meta section.

meta:
# some content...

clients:
File: clients.get_s3

meta:
# some content...

clients:
File: clients.get_gcloud

Now, edit the clients.py file, you only need to change the bucket_name parameter for the corresponding function.
For example, if using a bucket with the name bucket-name and S3, clients.py should look like this:

from ploomber.clients import S3Client

def get_s3():
return S3Client(bucket_name='bucket-name',

parent='ml-intermediate',
json_credentials_path='credentials.json')

from ploomber.clients import GCloudStorageClient

def get_gcloud():
return GCloudStorageClient(bucket_name='bucket-name',

parent='ml-online',
json_credentials_path='credentials.json')

To authenticate to the cloud storage service, add a credentials.json file in the project root (the same folder that has
the environment.yml file.

{
"aws_access_key_id": "YOUR-ACCESS-KEY-ID",
"aws_secret_access_key": "YOU-SECRET-ACCESS-KEY"

}

{
"type": "service_account",
"project_id": "project-id",
"private_key_id": "private-key-id",

(continues on next page)
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(continued from previous page)

"private_key": "private-key",
"client_email": "client-email",
"client_id": "client-id",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/service-

→˓account.iam.gserviceaccount.com"
}

Note: When running with local storage, Kubeflow takes the product path and name and stores it accordingly to its
temporary outputs folder. You will need to set the path of the products in the pipeline.yaml (the file that defines the
pipeline - above) to: product: '{{root}}/product/data/get.parquet' note how the product name appears
in the path (mandatory). In addition we can see below that for the nb and model products we set the path according to
their names.

This is how your pipeline.yaml file should look like if you’re using GCP:

meta:
jupyter_functions_as_notebooks: True
import_tasks_from: partial.features.yaml

clients:
File: clients.get_gcloud

tasks:
- source: tasks.get.fn
name: get
product: '{{root}}/product/data/get.parquet'
params:
sample: '{{sample}}'

- source: fit.py
name: fit
product:

nb: '{{root}}/nb/data/nb.html'
model: '{{root}}/model/data/model.pickle'

Important: Make sure to adjust those files to have the same output structure: partial.features.yaml and
pipeline.serve.yaml.

In addition, we also need to configure the env files to the right root location. Make sure in these files env.local.yaml,
env.serve.yaml and env.yaml the root is set to 'outputs' in a similar fashion to the env.yaml below:

root: 'outputs'
sample: False

Let’s now create the virtual environment:
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# configure environment
conda env create --file environment.yml

# activate environment
conda activate ml-intermediate

# generate lock file
conda env export --no-build --file environment.lock.yml

Let’s now verify that everything is configured correctly:

ploomber status

We now export the pipeline to Kubeflow:

soopervisor add train --backend kubeflow

Note: You don’t have to install soopervisor manually; it should’ve been installed when running ploomber
install. If missing, install it with pip install soopervisor.

soopervisor add creates a few new files. Let’s configure soopervisor.yaml which controls some settings:

train:
backend: kubeflow
# we will be using a remote docker hub, we'll set this image name
repository: idomic/general:kubeflow1
# make sure our credentials are included when building the image
include: [credentials.json]

Note: See how the repository is configured to the docker hub idomic/general and the image within it kubeflow1
(: separated)

Build the Docker image (takes a few minutes the first time):

soopervisor export train

Once the export process finishes, you’ll see a new train/ folder with three files: Dockerfile which is the file used
to build the docker image, a kubeflow_pipeline.py which is the pythonic version of the pipeline (you can run it
directly on a notebook instance within the cluster) and the file ploomber_pipeline.yamlwhich contains the kubeflow
pipeline to run. To deploy, go to your cluster and upload the .yaml file as a new pipeline (you can also use the CLI
directly (we’ll cover both options).
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Option 1: UI upload of a Kubeflow pipeline

Let’s go to the cluster and click on Pipelines (top left) and then on the top right on + Upload pipeline. (see image
below)

We now can name our pipeline ml_intermidiate, describe it (or copy the name to it), click on upload file and choose
file, pick the ploomber_pipeline.yaml we just created. On the bottom click on Create. (see image below)

Now we can see that the pipeline is configured, we can see each step and the dependencies, we’ll need to submit our
first pipeline run. To do that, click on + Create run
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The run details should be filled automatically, if not give a run name and the other missing details. On the bottom,
click on Start.
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Now you can watch the pipeline execution by clicking on the run you’ve created. When the tasks are ready, you can
view each task’s inputs and outputs, click on the task, and then on the Input/Output tab. The links contain the raw
files.
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Option 2: CLI upload of a Kubeflow pipeline

We need to make sure we have a working notebook on the cluster, we can open it and upload/copy the content of the
kubeflow_pipeline.py file. Make sure to uncomment the client rows below (6, 7, 10, 135). We’ll also need to
update the kfp endpoint to your cluster and port. Once set we can run the notebook and click on the run link below
to get to the pipeline and its run details.

kfp_endpoint="YOUR_KFP_ENDPOINT"
client = kfp.Client(kfp_endpoint)

# This is a sanity check to make sure your notebook and cluster can communicate
print(client.list_experiments())from ploomber.clients import S3Client
client.create_run_from_pipeline_func(ml_intermediate, arguments={})

4.5 Slurm

Tip: Got questions? Reach out to us on Slack.

This tutorial shows you how to export a Ploomber pipeline to SLURM.

If you encounter any issues with this tutorial, let us know.
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4.5.1 Pre-requisites

Important: This integration requires ploomber 0.13.7 or higher and soopervisor 0.6 or higher (To upgrade: pip
install ploomber soopervisor --upgrade)

• docker and docker-compose

4.5.2 Setting up the project

Note: These instructions are based on this article.

First, let’s create a SLURM cluster for testing. Create the following docker-compose.yml file:

services:
slurmjupyter:

image: rancavil/slurm-jupyter:19.05.5-1
hostname: slurmjupyter
user: admin
volumes:

- shared-vol:/home/admin
ports:

- 8888:8888
slurmmaster:

image: rancavil/slurm-master:19.05.5-1
hostname: slurmmaster
user: admin
volumes:

- shared-vol:/home/admin
ports:

- 6817:6817
- 6818:6818
- 6819:6819

slurmnode1:
image: rancavil/slurm-node:19.05.5-1
hostname: slurmnode1
user: admin
volumes:

- shared-vol:/home/admin
environment:

- SLURM_NODENAME=slurmnode1
links:

- slurmmaster
slurmnode2:

image: rancavil/slurm-node:19.05.5-1
hostname: slurmnode2
user: admin
volumes:

- shared-vol:/home/admin
environment:

(continues on next page)
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- SLURM_NODENAME=slurmnode2
links:

- slurmmaster
slurmnode3:

image: rancavil/slurm-node:19.05.5-1
hostname: slurmnode3
user: admin
volumes:

- shared-vol:/home/admin
environment:

- SLURM_NODENAME=slurmnode3
links:

- slurmmaster
volumes:

shared-vol:

Now, start the cluster:

docker-compose up -d

Important: Ensure you’re running a recent version of docker-compose, older versions may throw an error like this:

Unsupported config option for volumes: 'shared-vol'
Unsupported config option for services: 'slurmmaster'

Tip: Once the cluster is up, go http://localhost:8888 to open JupyterLab, where you can edit files, open terminals, and
monitor Slurm jobs (Click on Slurm Queue under HPC Tools in the Launcher menu) from your browser.

Let’s connect to the cluster to submit the jobs:

docker-compose exec slurmjupyter /bin/bash

Configure the environment:

# Install miniconda (to get a Python environment ready, not needed if
# There's already a Python environment up and running)
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash ~/Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda

# Init conda
eval "$($HOME/miniconda/bin/conda shell.bash hook)"

# Create and activate env
conda env create --name myenv
conda activate myenv

# install ploomber and soopervisor in the base environment
pip install ploomber soopervisor

(continues on next page)
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# Download sample pipeline to example/
ploomber examples -n templates/ml-basic -o example
cd example

# Install project dependencies
pip install -r requirements.txt

# Register a soopervisor environment with the SLURM backend
soopervisor add cluster --backend slurm

The soopervisor add creates a cluster/ directory with a template.sh file, this is a template that Soopervisor
uses to submit the tasks in your pipeline. If should contain the placeholders {{name}}, and {{command}}, which
Soopervisor will replace by the task name and the command to execute such a task, respectively. You can customize it
to suit your needs.

For example, since we want the tasks to run in the conda environment we created, edit the template.sh so it looks
like this:

#!/bin/bash
#SBATCH --job-name={{name}}
#SBATCH --output=result.out
#

# Activate myenv
conda activate myenv
srun {{command}}

We can now submit the tasks:

soopervisor export cluster

Once jobs finish execution, you’ll see the outputs in the output directory.

Tip: If you execute soopervisor export cluster, only tasks whose source code has changed will be executed
again, to force the execution of all tasks, run soopervisor export cluster --mode force

Note: When scheduling jobs, soopervisor calls the sbatch command and passes the
--kill-on-invalid-dep=yes, this causes tasks to abort if any of its dependencies fails. For example, if you
have a load -> clean pipeline and load fails, clean is aborted.

Important: For Ploomber to determine which tasks to schedule, it needs to parse your pipeline and check each task’s
status. If your pipeline has functions as tasks, the Python environment where you execute soopervisor export
must have all dependencies required to import those functions. e.g., if a function train_model uses sklearn, then
sklearn must be installed. If your pipeline only contains scripts/notebooks, this is not required.

Stop the cluster:

docker-compose stop
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4.6 Full workflow

Important: This tutorial requires soopervisor 0.6.2 or higher, and soorgeon 0.0.10 or higher.

This tutorial shows how to go from a monolithic Jupyter notebook to a modular, production-ready pipeline deployed
in workflow by using the tools in our ecosystem:

1. soorgeon

2. ploomber

3. soopervisor

4.6.1 Pre-requisites

• docker

4.6.2 Building Docker image

We provide a Docker image so you can quickly run this example:

# get repository
git clone https://github.com/ploomber/soopervisor
cd soopervisor/tutorials/workflow

# build image
docker build --tag ploomber-workflow .

# create a directory to store the pipeline output
export SHARED_DIR=$HOME/ploomber-workflow
rm -rf $SHARED_DIR
mkdir -p $SHARED_DIR

# start (takes ~1 minute to be ready)
docker run -i -t \

--privileged=true -v /var/run/docker.sock:/var/run/docker.sock \
--volume $SHARED_DIR:/mnt/project \
--env SHARED_DIR \
--env PLOOMBER_STATS_ENABLED=false \
-p 2746:2746 \
-p 8888:8888 \
ploomber-workflow

Note: We need to run docker run in privileged mode since we’ll be running docker commands inside the container.
More on that here

Upon initialization, JupyterLab will be running at http://127.0.0.1:8888
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4.6.3 Refactor notebook

First, we use soorgeon to refactor the notebook:

soorgeon refactor nb.ipynb -p /mnt/project/output -d parquet

We can generate a plot to visualize the dependencies:

ploomber plot

If you open the generated pipeline.png, you’ll see that soorgeon inferred the dependencies among the sections in
the notebook and built a Ploomber pipeline automatically!

Now you can iterate this modular pipeline with Ploomber, but for now, let’s go to the next stage and deploy to Kuber-
netes.

4.6.4 Configure target platform

Soopervisor allows you to configure the target platform using a soopervisor.yaml file, let’s add it and set the backend
to argo-worflows:

# soopervisor add requires a requirements.lock.txt file
cp requirements.txt requirements.lock.txt

# add the taget environment
soopervisor add training --backend argo-workflows

Usually, you’d manually edit soopervisor.yaml to configure your environment; for this example, let’s use one that
we already configured, which tells soopervisor to mount a local directory to every pod so we can review results later:

cp /soopervisor-workflow.yaml soopervisor.yaml

4.6.5 Submit pipeline

We finished configuring; let’s now submit the workflow:

# build docker image and generate an argo's yaml spec
soopervisor export training --skip-tests --ignore-git --mode force

# import image to the k8s cluster
k3d image import project:latest --cluster mycluster

# submit workflow
argo submit -n argo --watch training/argo.yaml

Congratulations! You just went from a legacy notebook to production-ready pipeline!

Note: k3d image import is only required if creating the cluster with k3d.

Once the execution finishes, take a look at the generated artifacts:

36 Chapter 4. Usage

https://github.com/ploomber/soopervisor/blob/master/tutorials/workflow/soopervisor-workflow.yaml


Soopervisor

ls /mnt/project

Tip: You may also watch the progress from the UI.

# port forwarding to enable the UI
kubectl -n argo port-forward --address 0.0.0.0 svc/argo-server 2746:2746

Then, open: https://127.0.0.1:2746

4.6.6 Clean up

To delete the cluster:

k3d cluster delete mycluster

4.7 AWS Lambda

Note: Got questions? Reach out to us on Slack.

AWS Lambda is a serverless compute service. It allows you to deploy functions in the cloud without worrying about
servers or scaling. It is a great (and cheap) option to deploy Machine Learning models.

This tutorial shows you how to deploy a Machine Learning model to AWS Lambda. Unlike other frameworks or
tutorials, Soopervisor and Ploomber allow you to deploy complete inference DAGs (as opposed to a model file) without
changing your training pipeline’s code; handling packaging, containerization and deployment.

If you encounter any issues with this tutorial, let us know.

4.7.1 Pre-requisites

• conda

• sam

• docker

• git

• Install Ploomber with pip install ploomber
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4.7.2 Training vs. serving pipelines

When training an ML model, you may organize the pipeline in several tasks such as “get data”, “clean data”, “compute
feature 1”, “compute feature 2” and “train model”.

To deploy the model, you have to provide both a model file and all the necessary feature generation steps. Soopervisor
and Ploomber allow you to create an online inference pipeline from a training one without code changes.

In our case, your inference pipeline includes “compute feature 1” and “compute feature 2”; and adds two new tasks:
one to receive the input raw data and another one to load a model and make a prediction using the feature vector.

This tutorial will walk you through the development and deployment process.

4.7.3 Setting up project

We’ll now fetch an example pipeline:

git clone https://github.com/ploomber/projects
cd projects/templates/ml-online/

Configure the development environment:

ploomber install

Then, activate the environment:

conda activate ml-online

4.7.4 Exploring the example code

Before diving into the code, let’s plot our pipeline to have a better idea of its structure:

# required to generate plots
conda install pygraphviz --channel conda-forge --yes

# generate plot
ploomber plot

Open the generated pipeline.png file. The left-most task in the pipeline obtains data for training, then we have a of
couple tasks that generate some extra feature, a task that joins all features into a single data frame and one that fits a
model.

Those tasks are declared in the src/ml_online/pipeline.yaml file. Open the file to review the content, you will
see that there are two tasks in the tasks section (to get data and to fit the model), the remaining tasks are coming from
the src/ml_online/pipeline-features.yaml; this separation allows us to convert the feature engineering portion
of the pipeline into an inference pipeline without code changes.

Note that for this to work, all feature engineering tasks must be Python functions with a configured serializer and
unserializer. The other tasks can be of any type.
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4.7.5 Training a model

Let’s now train a model:

ploomber build

Once the pipeline finishes, copy the trained model from products/model.pickle to the standard model location:
src/ml_online/model.pickle.

# on linux/mac
cp products/model.pickle src/ml_online/model.pickle

That’s it. We’re ready to export to AWS Lambda.

4.7.6 Generating files

Let’s now create the necessary files to export to AWS Lambda:

soopervisor add serve --backend aws-lambda

Note: You don’t have to install soopervisor manually; it should’ve been installed when running ploomber
install. If missing, install it with pip install soopervisor.

You have to provide a few details before you can run the model in AWS Lambda. First, edit the serve/
test_aws_lambda.py file. This file contains a unit test to ensure your model works as expected.

The test case is already configured, you only have to replace the line that contains, body = None for a sample input
value. In our case, it looks like this:

body = {
'sepal length (cm)': 5.1,
'sepal width (cm)': 3.5,
'petal length (cm)': 1.4,
'petal width (cm)': 0.2,

}

Important: You should also remove the line that raises the NotImplementedError.

Next, we have to tell Lambda, how to handle an incoming API request, this happens in the serve/app.py file. The
request body is received as a string but our model receives a data frame as input. The sample code already implements a
“string to data frame” implementation, hence, you only have to delete the line that raises the NotImplementedError.
When you use this for your own model, write the applicable parsing logic.

To deploy to AWS Lambda, soopervisor packages your code and creates a Docker image. We can build such Docker
image (without actually deploying to AWS Lambda) to test our API with the following command:

soopervisor export serve --until-build

The command will take a few minutes since it has to create a Docker image, subsequent runs will be much faster.

Once finished, you may start the API locally with:
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cd serve
sam local start-api

Open a new terminal and call the API:

curl http://127.0.0.1:3000/predict -X POST -d '{"sepal length (cm)": 5.1, "sepal width␣
→˓(cm)": 3.5, "petal length (cm)": 1.4, "petal width (cm)": 0.2}'

Try calling with other values to get a different prediction

Note: Due to the way the local API is built this will take a few seconds

Congratulations! You just ran Ploomber on AWS Lambda!

Deployment

soopervisor export serve

explain the –guided thing and add some link

you must be authenticated to use lambda, s3, and CloudFormation

4.7.7 About template.yaml

To deploy to Lambda, AWS requires a template.yaml file to specify your serverless application. A sample file that
configures an API Gateway is provided, but you may need to edit it for your application. Click here to learn more.

4.8 Airflow

Note: This is a quick reference. For a full tutorial, click here.

4.8.1 Step 1: Add target environment

Tip: To get a sample pipeline to try this out, see this.
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KubernetesPodOperator

# add a target environment named 'airflow' (uses KubernetesPodOperator)
soopervisor add airflow --backend airflow

Note: Using the --preset option requires soopervisor>=0.7

# add a target environment named 'airflow-k8s' (uses KubernetesPodOperator)
soopervisor add airflow-k8s --backend airflow --preset kubernetes

BashOperator

Important: If using --preset bash, the BashOperator tasks will use ploomberCLI to execute your pipeline. Edit
the cwd argument in BashOperator so your DAG runs in a directory where it can import your project’s pipeline.
yaml and source code.

# add a target environment named 'airflow-bash' (uses BashOperator)
soopervisor add airflow-bash --backend airflow --preset bash

DockerOperator

Important: Due to a bug in the DockerOperator, we must set enable_xcom_pickling = True in airflow.cfg
file. By default, this file is located at ~/airflow/airflow.cfg.

# add a target environment named 'airflow-docker' (uses DockerOperator)
soopervisor add airflow-docker --backend airflow --preset docker

4.8.2 Step 2: Generate Airflow DAG

# export target environment named 'airflow'
soopervisor export airflow

Important: For your pipeline to run successfully, tasks must write their outputs to a common location. You can do
this either by creating a shared disk or by adding a storage client. Click here to learn more.
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4.9 Kubernetes (Argo)

Note: This is a quick reference. For a full tutorial, click here.

4.9.1 Step 1: Add target environment

Tip: To get a sample pipeline to try this out, see this.

# add a target environment named 'argo'
soopervisor add argo --backend argo-workflows

The command above will generate a pre-configured argo/Dockerfile and a new entry named argo in the
soopervisor.yaml file. For information on the configuration schema, click here.

At the very least, you’ll have to modify repository to point it to the container repository.

4.9.2 Step 2: Generate Argo Spec (YAML)

# generate argo yaml spec
soopervisor export argo --skip-tests --ignore-git

The command will build the docker image, push it to the repository and generate an Argo spec at argo/argo.yaml.

Note that the command above will only export outdated tasks (the ones whose source code has changed since the last
execution), to force exporting all tasks:

# force exporting all tasks regardless of status
soopervisor export argo --skip-tests --ignore-git --mode force

Important: For your pipeline to run successfully, tasks must write their outputs to a common location. You can do
this either by creating a shared disk or by adding a storage client. Click here to learn more.

To submit the workflow:

# submit workflow
argo submit -n argo argo/argo.yaml

For more information, refer to Argo’s CLI documentation.
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4.10 SLURM

Note: This is a quick reference. For a full tutorial, click here.

4.10.1 Step 1: Add target environment

Tip: To get a sample pipeline to try this out, see this.

# add a target environment named 'slurm'
soopervisor add slurm --backend slurm

The command above will generate an entry named slurm in the soopervisor.yaml file, and a slurm/template.
sh file, you can use the latter to customize how Soopervisor executes the tasks in your pipeline. Under the hood,
Soopervisor executes a sbatch job.sh command for each task in your pipeline, where job.sh is generated by using
template.sh as a template. For more information and customization options, click here.

4.10.2 Step 2: Submit jobs

To submit the jobs to SLURM:

# submit pipeline to the cluster
soopervisor export slurm --skip-tests --ignore-git

Note that the command above will only export outdated tasks (the ones whose source code has changed since the last
execution), to force exporting all tasks:

# force exporting all tasks regardless of status
soopervisor export slurm --skip-tests --ignore-git --mode force

Important: For your pipeline to run successfully, tasks must write their outputs to a common location. You can do
this either by creating a shared disk or by adding a storage client. Click here to learn more.

4.11 Task communication

Since soopervisor executes tasks in isolated environments, you must provide a way to pass the output files of each
task to upcoming tasks that use them as inputs.

There are two ways of doing so: either mount a shared disk on all containers, or configure a File client to use remote
storage; we describe both options in the next sections.
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4.11.1 Shared disk

If using K8s/Argo, you can mount a volume on each pod by adding some configuration to your soopervisor.yaml
file. Refer to the Kubernetes configuration schema documentation for details.

Note that the configuration flexibility is limited; if you need a more flexible approach, you can generate the Argo YAML
Spec (by running the soopervisor export command), and then edit the generated spec to suit your needs (the spec
is generated in {name}/argo.yaml, where {name} is the name of your target environment).

When using Airflow, the soopervisor add generates an output .py file with the Airflow DAG, you can edit this file
to configure a shared disk and execute soopervisor export afterwards. The Airflow tutorial shows how to do this,
you can see the .py file that the tutorial uses here.

To execute pipelines in AWS Batch, you must create a compute environment, map it to a job queue, and include the job
queue name in your soopervisor.yaml file. You can configure a shared disk using Amazon EFS, click here to learn
how to configure EFS in your compute environment.

If running on SLURM, sharing a disk depends on your cluster configuration, so ensure you can mount a disk in all
nodes and that your pipeline writes their outputs in the shared disk.

Important: If using a shared disk, execute soopervisor export with the --skip-tests flag, otherwise Sooper-
visor will raise an error if your pipeline does not have a File client configured.

4.11.2 Using remote storage

As an alternative, you can configure a File client to ensure each task has their input files before execution. We currently
support Amazon S3 and Google Cloud Storage.

To configure a client, add the following to your pipeline.yaml file:

Listing 1: pipeline.yaml

# configure a client
clients:

# note the capital F
File: clients.get

tasks:
# content continues...

Then, create a clients.py file (in the same directory as your pipeline.yaml) and declare a get function that returns
a File client instance:

Listing 2: clients.py

from ploomber.clients import S3Client

def get():
return S3Client(bucket_name='YOUR-BUCKET-NAME',

parent='PARENT-FOLDER-IN-BUCKET',
json_credentials_path='credentials.json')

Click here to see the S3Client documentation.
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Listing 3: clients.py

from ploomber.clients import GCloudStorageClient

def get():
return GCloudStorageClient(bucket_name='YOUR-BUCKET-NAME',

parent='PARENT-FOLDER-IN-BUCKET',
json_credentials_path='credentials.json')

Click here to see the GCloudStorageClient documentation.

Next, create a credentials.json (in the same directory as your pipeline.yaml) with your authentication informa-
tion. The file should look like this:

{
"aws_access_key_id": "YOUR-ACCESS-KEY-ID",
"aws_secret_access_key": "YOU-SECRET-ACCESS-KEY"

}

{
"type": "service_account",
"project_id": "project-id",
"private_key_id": "private-key-id",
"private_key": "private-key",
"client_email": "client-email",
"client_id": "client-id",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/service-

→˓account.iam.gserviceaccount.com"
}

Note: If you’re using a Docker-based exporter (K8s/Argo, Airflow, or AWS Batch),you must ensure that your
credentials.json file is included in your Docker image. You can ensure this by adding the following to your
soopervisor.yaml
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Listing 4: soopervisor.yaml

some-name:
# tell soopervisor to include the credentials.json file
include: [credentials.json]
# continues

You can check your local configuration by loading your pipeline using ploomber status. If you see a table listing
your tasks, it means the client has been configured successfully.

Furthermore, when executing the soopervisor export command and using a Docker-based exporter (K8s/Argo,
Airflow, and AWS Batch), Soopervisor will check that the File client in the Docker image is correctly configured by
trying to establish a connection with your credentials to the remote storage.

4.12 Docker building process

Note: This guide does not apply if using SLURM.

4.12.1 Installing dependencies

To install dependencies in the Docker image, Soopervisor looks for a requirements.lock.txt (if using pip) or an
environment.lock.yml (if using conda). Although not strictly enforced, such files should contain specific versions
of each dependency so that breaking changes from any dependency do not break the pipeline. For example, if your
project uses ploomber, pandas, and scikit-learn; your dependencies may look like this:

ploomber
pandas
scikit-learn

dependencies:
- ploomber
- pandas
- scikit-learn

The lock files generated from such files look like this:

ploomber==0.11
pandas==1.2.4
scikit-learn==0.24.2
# many other lines...

dependencies:
- ploomber==0.11
- pandas==1.2.4
- scikit-learn==0.24.2
# many other lines...

You can generate such files with the following commands:

46 Chapter 4. Usage



Soopervisor

pip freeze > requirements.lock.txt

conda env export --no-build --file environment.lock.yml

Tip: If you use ploomber install, lock files are automatically generated.

4.12.2 Included files

To export to any of the supported platforms, Soopervisor creates a Docker image from your project. In most cases,
there are files in your project that you want to exclude from the Docker image to reduce its size. Common examples
are: virtual environments, data files, or exploratory notebooks.

The process to determine which files to include changes if your project isn’t a package (i.e., there isn’t a setup.py file)
file or it is a package.

Non-packaged projects

If your project isn’t a package and you’re using git, Soopervisor copies every file tracked by your repository. To see the
list of currently tracked files, run the following command:

git ls-tree -r HEAD --name-only

This means that you can control what file goes into the Docker image by changing your .gitignore file. If there are
git tracked that you want to exclude, use the exclude key in soopervisor.yaml

some-target:
exclude:

- file-to-exclude.txt

Note: If you’re not using git, all files are copied into the Docker image by default. You can control what to exclude
using the exclude key.

If there are files that git ignores but you want to include, use the include key:

some-target:
include:

- file-to-include.txt

Tip: It’s recommended that you use .gitignore to control which files to exclude. The include and exclude keys
in soopervisor.yaml should only be used to list a few particular files.
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Packaged projects

If your project is a package (i.e., it has a setup.py file), a source distribution is generated and copied into the Docker
image. This implies that the process to control which files are included is the same used to control which files to
include in a source distribution. Unfortunately, there is more than one way to do this. The most reliable way is to use
a MANIFEST.in file, click here to learn more.

Tip: You can use ploomber scaffold --package to quickly generate a pre-configured base packaged project. You
can then modify the MANIFEST.in file to customize your build.

4.13 Non-packaged vs Packaged

Soopervisor supports two types of projects: non-packaged and packaged.

4.13.1 Non-packaged

Non-packaged are simpler projects that require fewer configuration files. They only need a pipeline.yaml file to be
valid. Non-packaged projects are a good option for small projects. To create one:

# create a base non-packaged project
ploomber scaffold

4.13.2 Packaged

Packaged projects have more structure and require more configuration files. The main advantage is they allow you to
organize your work better.

For example, if you have some Python modules that you reuse in several files, you must to modify your PYTHONPATH
or sys.path to ensure that such modules are importable. If your project is packaged, this isn’t necessary, since you
can install your project with pip:

pip install --editable path/to/myproject

After installation, you can import modules from your project anywhere in a Python session, notebook, or other modules
inside your project, making it simpler to create modular code.

To create a base package project:

# create a base packaged project
ploomber scaffold --package
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4.14 Command line interface

Soopervisor has two commands, add and export.

4.14.1 soopervisor add

Adds a new target environment:

soopervisor add {name} --backend {backend}

• {name} is any identifier you want to identify this configuration

• {backend} is one of aws-batch, aws-lambda, argo-workflows, airflow, or slurm

The command adds a new section in a soopervisor.yaml file (creates one if needed) with the {name}, and adds a
few necessary files in a {name} directory.

Example:

soopervisor add train-cluster --backend argo-workflows

4.14.2 soopervisor export

Exports a target environment:

soopervisor export {name}

Where {name} is the name of a target environment.

soopervisor export has a few options.

Execution mode: --mode {mode}/ -m

• incremental (default) only export tasks whose source has changed.

• regular all tasks are exported, status (execute/skip) determined at runtime.

• force all tasks are exported and executed regardless of status.

Example:

soopervisor export train-cluster --mode force

--ignore-git / -i

Note: --ignore-git has no effect when using SLURM

If you are using soopervisor inside a git repository, soopervisor will only copy the files tracked by your repository
into the Docker image. For example, if you have a secrets.json file, but your .gitignore file has a secrets.json
entry, soopervisorwil not copy it to the Docker image. If you pass --ignore-git, the status of your git repository
is ignored and all files are copied.

Example:
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soopervisor export train-cluster --ignore-git

--skip-tests / -s

Note: --skip-tests has no effect when using SLURM

Soopervisor tests the pipeline before submitting, for example, it checks that a File.client is configured, use this flag
to skip docker image tests:

Example:

soopervisor export train-cluster --skip-tests

4.15 Kubernetes

Configuration schema for Kubernetes.

4.15.1 Example

Listing 5: soopervisor.yaml

k8s-config:
exclude: [my-venv/]
repository: my-docker.repository.io/some-name
mounted_volumes:
- name: shared-folder
spec:
hostPath:
path: /host

The above soopervisor.yaml, translates into the following Argo spec:

Listing 6: argo.yaml

apiVersion: argoproj.io/v1alpha1
kind: Workflow
spec:
templates:
script:
volumeMounts:
- mountPath: /mnt/shared-folder
name: shared-folder
subPath: ''

# continues ...
- dag:

tasks:
# continues...

volumes:
(continues on next page)
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(continued from previous page)

- hostPath:
path: /host

name: shared-folder

4.15.2 Schema

class soopervisor.abc.AbstractConfig
Abstract class for configuration objects

Parameters preset (str) – The preset to use, this determines certain settings and is backend-
specific

class soopervisor.argo.config.ArgoConfig
Configuration for exporting to Argo

Parameters

• repository (str) – Repository for uploading the Docker image.

Important: If repository is null, it sets the imagePullPolicy in the generated spec
to Never.

• mounted_volumes (list, optional) – List of volumes to mount on each Pod, described
with the ArgoMountedVolumes schema.

class soopervisor.argo.config.ArgoMountedVolume
Volume to mount in the Pod at /mnt/{name}

Parameters

• name (str) – Volume’s name

• sub_path (str, default='') – Sub path from the volume to mount in the Pod (set in
volumeMounts[*].subPath). Defaults to the volume’s root

• spec (dict) – The volume spec, passed directly to the output spec. e.g:
{'persistentVolumeClaim': {'claimName': 'someName'}}

4.16 SLURM

4.16.1 The template.sh file

When using SLURM as backend, the soopervisor add {env-name} command wil create an {env-name}/
template.sh file.

Under the hood, Soopervisor uses the template.sh for all tasks in your pipeline and executes a sbatch job.sh
command for each one.

template.sh contains two placeholders {{name}} and {{command}}, these placeholders are mandatory and should
not be removed, at runtime Soopervisor will replace them with the name of the task and the command execute, one
per task in your pipeline. However, you may add other commands to template.sh to customize execution. Typically,
you’ll have to add any preparation steps, like activating a virtual environment:
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#!/bin/bash
#SBATCH --job-name={{name}}
#SBATCH --output=result.out
#

# activate conda environment
conda activate myenv
# execute task
srun {{command}}

4.16.2 Customizing task execution

You may want to use different settings for each task in your pipeline in some scenarios. To achieve that, you can add
more files next to the template.sh file, and Soopervisor will choose which one to use depending on the task’s name.

The resolution logic is as follows. Say you have a task named fit-gpu:

1. Look for an exact match (i.e., fit-gpu.sh)

2. Look for a file with a double underscore placeholder (e.g., fit-__.sh, or __-gpu.sh)

3. If no matches, use template.sh

You can use this templating feature to customize the submitted jobs, for example to pass custom parameters to the srun
command.
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